126 research outputs found

    Large-Angular-Scale Anisotropy in the Cosmic Background Radiation

    Full text link

    Gravitational Waves Astronomy: a cornerstone for gravitational theories

    Full text link
    Realizing a gravitational wave (GW) astronomy in next years is a great challenge for the scientific community. By giving a significant amount of new information, GWs will be a cornerstone for a better understanding of gravitational physics. In this paper we re-discuss that the GW astronomy will permit to solve a captivating issue of gravitation. In fact, it will be the definitive test for Einstein's general relativity (GR), or, alternatively, a strong endorsement for extended theories of gravity (ETG).Comment: To appear in Proceedings of the Workshop "Cosmology, the Quantum Vacuum and Zeta Functions" for the celebration of Emilio Elizalde's sixtieth birthday, Barcelona, March 8-10, 201

    Testing special relativity with geodetic VLBI

    Full text link
    Geodetic Very Long Baseline Interferometry (VLBI) measures the group delay in the barycentric reference frame. As the Earth is orbiting around the Solar system barycentre with the velocity VV of 30 km/s, VLBI proves to be a handy tool to detect the subtle effects of the special and general relativity theory with a magnitude of (V/c)2(V/\textrm{c})^2. The theoretical correction for the second order terms reaches up to 300~ps, and it is implemented in the geodetic VLBI group delay model. The total contribution of the second order terms splits into two effects - the variation of the Earth scale, and the deflection of the apparent position of the radio source. The Robertson-Mansouri-Sexl (RMS) generalization of the Lorenz transformation is used for many modern tests of the special relativity theory. We develop an alteration of the RMS formalism to probe the Lorenz invariance with the geodetic VLBI data. The kinematic approach implies three parameters (as a function of the moving reference frame velocity) and the standard Einstein synchronisation. A generalised relativistic model of geodetic VLBI data includes all three parameters that could be estimated. Though, since the modern laboratory Michelson-Morley and Kennedy-Thorndike experiments are more accurate than VLBI technique, the presented equations may be used to test the VLBI group delay model itself.Comment: Proceedings of the IAG 2017 Scientific Meeting, Kobe, Japa

    MAXIPOL: a balloon-borne experiment for measuring the polarization anisotropy of the cosmic microwave background radiation

    No full text
    We discuss MAXIPOL, a bolometric balloon-borne experiment designed to measure the E-mode polarization anisotropy of the cosmic microwave background radiation (CMB) on angular scales of 10 arcmin to 2 degrees. MAXIPOL is the first CMB experiment to collect data with a polarimeter that utilizes a rotating half-wave plate and fixed wire-grid polarizer. We present the instrument design, elaborate on the polarimeter strategy and show the instrument performance during flight with some time domain data. Our primary data set was collected during a 26 hour turnaround flight that was launched from the National Scientific Ballooning Facility in Ft. Sumner, New Mexico in May 2003. During this flight five regions of the sky were mapped. Data analysis is in progress

    CMB Telescopes and Optical Systems

    Full text link
    The cosmic microwave background radiation (CMB) is now firmly established as a fundamental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB observations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1: Telescopes and Instrumentatio

    A Review of One-Way and Two-Way Experiments to Test the Isotropy of the Speed of Light

    Full text link
    As we approach the 125th anniversary of the Michelson-Morley experiment in 2012, we review experiments that test the isotropy of the speed of light. Previous measurements are categorized into one-way (single-trip) and two-way (round-trip averaged or over closed paths) approaches and the level of experimental verification that these experiments provide is discussed. The isotropy of the speed of light is one of the postulates of the Special Theory of Relativity (STR) and, consequently, this phenomenon has been subject to considerable experimental scrutiny. Here, we tabulate significant experiments performed since 1881 and attempt to indicate a direction for future investigation.Comment: Updated Fig. 7 and references; Revised sections 3.2 and 4. Accepted in the Indian Journal of Physics on March 30, 201

    Characterizing the non-linear growth of large-scale structure in the Universe

    Get PDF
    The local Universe displays a rich hierarchical pattern of galaxy clusters and superclusters. The early Universe, however, was almost smooth, with only slight 'ripples' seen in the cosmic microwave background radiation. Models of the evolution of structure link these observations through the effect of gravity, because the small initially overdense fluctuations attract additional mass as the Universe expands. During the early stages, the ripples evolve independently, like linear waves on the surface of deep water. As the structures grow in mass, they interact with other in non-linear ways, more like waves breaking in shallow water. We have recently shown how cosmic structure can be characterized by phase correlations associated with these non-linear interactions, but hitherto there was no way to use that information to reach quantitative insights into the growth of structures. Here we report a method of revealing phase information, and quantify how this relates to the formation of a filaments, sheets and clusters of galaxies by non-linear collapse. We use a new statistic based on information entropy to separate linear from non-linear effects and thereby are able to disentangle those aspects of galaxy clustering that arise from initial conditions (the ripples) from the subsequent dynamical evolution.Comment: Accepted for publication in Nature. For high-resolution Figure 3, please see http://www.nottingham.ac.uk/~ppzpc/phases/n0colorphase.html, For the animations and the idea of this paper please see http://www.nottingham.ac.uk/~ppzpc/phases/index.htm

    Fluids in cosmology

    Full text link
    We review the role of fluids in cosmology by first introducing them in General Relativity and then by applying them to a FRW Universe's model. We describe how relativistic and non-relativistic components evolve in the background dynamics. We also introduce scalar fields to show that they are able to yield an inflationary dynamics at very early times (inflation) and late times (quintessence). Then, we proceed to study the thermodynamical properties of the fluids and, lastly, its perturbed kinematics. We make emphasis in the constrictions of parameters by recent cosmological probes.Comment: 34 pages, 4 figures, version accepted as invited review to the book "Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment". Version 2: typos corrected and references expande

    Strong interface-induced spin-orbit coupling in graphene on WS2

    Get PDF
    Interfacial interactions allow the electronic properties of graphene to be modified, as recently demonstrated by the appearance of satellite Dirac cones in the band structure of graphene on hexagonal boron nitride (hBN) substrates. Ongoing research strives to explore interfacial interactions in a broader class of materials in order to engineer targeted electronic properties. Here we show that at an interface with a tungsten disulfide (WS2) substrate, the strength of the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The induced SOI leads to a pronounced low-temperature weak anti-localization (WAL) effect, from which we determine the spin-relaxation time. We find that spin-relaxation time in graphene is two-to-three orders of magnitude smaller on WS2 than on SiO2 or hBN, and that it is comparable to the intervalley scattering time. To interpret our findings we have performed first-principle electronic structure calculations, which both confirm that carriers in graphene-on-WS2 experience a strong SOI and allow us to extract a spin-dependent low-energy effective Hamiltonian. Our analysis further shows that the use of WS2 substrates opens a possible new route to access topological states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines. Final version with expanded discussion of the relation between theory and experiments to be published in Nature Communication

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel.In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime: we compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit
    • 

    corecore